The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  0  0  X  X  0  X  0  X  0  X  0  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  0  X  0  X  X  X  X  X  X  0  0  0
 0  0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  0  X  X  0  0  X  0  X  0  X  0  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  X  0  X  X  X  X  X  X  X  X  X  0  0  0  0  0  0
 0  0  0  X  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  X  0  X  0  X  X  X  X  0  0  0  0  X  0  0  X  X  0  0  X  X  X  0  0  X  X  X  0  0  0  X  X  0  X  0  0  0  0  X  X  X  X  0  0  0  0  0
 0  0  0  0  X  0  0  0  X  X  X  X  X  0  X  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  0  X  X  X  0  X  X  X  X  0  X  X  0  X  X  X  X  0  X  X  X  0  X  X  X  X  0  0  X  X  X  0  0  0
 0  0  0  0  0  X  0  X  X  X  0  0  0  0  X  X  X  X  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  0  X  X  X  0  X  X  0  0  X  0  0  0  X  0  0  0  X  0  X  X  X  0  0  X  0  X  0  0  X  X  0  0  0
 0  0  0  0  0  0  X  X  0  X  X  0  X  X  X  0  0  X  0  0  X  X  X  X  X  X  0  0  0  0  X  X  0  0  0  0  X  X  X  X  X  0  X  0  0  X  X  X  0  0  0  X  0  0  0  X  X  X  X  X  0  0  X  0  0  0  0

generates a code of length 67 over Z2[X]/(X^2) who�s minimum homogenous weight is 64.

Homogenous weight enumerator: w(x)=1x^0+63x^64+128x^67+63x^70+1x^134

The gray image is a linear code over GF(2) with n=134, k=8 and d=64.
As d=64 is an upper bound for linear (134,8,2)-codes, this code is optimal over Z2[X]/(X^2) for dimension 8.
This code was found by Heurico 1.16 in 0.063 seconds.